

Niedrigzinsphase

Infolge der Finanzmarktkrise 2008 entstand eine über Jahre andauernde Phase niedriger Zinsen.

 a) Für einen Kredit mit jährlich nachschüssigen Annuitäten in Höhe von je € 12.000 wurde in der Zeit vor der Niedrigzinsphase ein fixer Jahreszinssatz i vereinbart.
 Die Zeile des Tilgungsplans für das Jahr 7 ist gegeben:

Jahr	Zinsanteil	Tilgungsanteil	Annuität	Restschuld	
7	€ 3.628,87	€ 8.371,13	€ 12.000,00	€ 78.030,55	

1) Berechnen Sie den Jahreszinssatz i.

[0/1 P.]

2) Berechnen Sie die Höhe des Kredits.

[0/1 P.]

Nach dem Jahr 7 wird mit der Bank über einen neuen Zinssatz verhandelt. Mit dem ursprünglichen Zinssatz ergibt sich im Tilgungsplan folgende Zeile für das Jahr 8:

Jahr	Zinsanteil	Tilgungsanteil	Annuität	Restschuld	
8	Z_8	T_8	€ 12.000,00	K_8	

Mit dem neuen, niedrigeren Zinssatz ergibt sich im Tilgungsplan folgende Zeile für das Jahr 8:

Jahr	Zinsanteil	Tilgungsanteil	Annuität	Restschuld	
8	Z_{neu}	T_{neu}	€ 12.000,00	K_{neu}	

Diese beiden Zeilen für das Jahr 8 werden verglichen.

3) Tragen Sie jeweils das richtige Zeichen ("<" oder ">") ein.

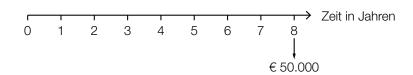
Z_{-}	Z_{\circ}	T	T_{\circ}	K	K_{\circ}	[0/1 P.]
←neu	- 8	' neu	' 8	' `neu	, \ 8	[0/11.]

Bundesministerium Bildung, Wissenschaft und Forschung

- b) Bei Tilgungsplänen können verschiedene Sonderfälle auftreten.
 - 1) Ordnen Sie den beiden Satzanfängen jeweils eine Fortsetzung aus A bis D so zu, dass zutreffende Aussagen entstehen. [0/1 P.]

Wenn der Tilgungsanteil in einem bestimmten Jahr gleich 0 ist,	
Wenn der Tilgungsanteil in einem bestimmten Jahr negativ ist,	

А	so wird die Restschuld in diesem Jahr vollständig beglichen.
В	so ist die Restschuld in diesem Jahr niedriger als im vorhergehenden Jahr.
С	so werden in diesem Jahr nur die anfallenden Zinsen beglichen.
D	so wird in diesem Jahr weniger als die anfallenden Zinsen zurückgezahlt.


c) In 8 Jahren sollen € 50.000 angespart werden. Die nachstehende Gleichung beschreibt den Ansparplan für einen positiven Jahreszinssatz.

$$R \cdot \frac{q^3 - 1}{q - 1} \cdot q^5 + 20000 \cdot q^2 = 50000$$

R ... Rate

q ... jährlicher Aufzinsungsfaktor

1) Tragen Sie alle Raten R und den Betrag in Höhe von € 20.000 auf der nachstehenden Zeitachse ein. [0/1/2 P.]

2) Berechnen Sie die Höhe der Rate R für den Fall, dass der Zinssatz 0 % p.a. ist. [0/1 P.]

BundesministeriumBildung, Wissenschaft und Forschung

d) Die Europäische Zentralbank legt einen sogenannten *Leitzinssatz* fest. Seit der Finanzmarktkrise 2008 ist der Leitzinssatz gesunken (siehe nachstehende Tabelle):

Zeit ab 1.1.2008 in Jahren	0	1	2	3	4	5	6	7
Leitzinssatz in Prozent	4,00	2,50	1,00	1,00	1,00	0,75	0,25	0,05

Datenquelle: https://www.finanzen.net/leitzins/@historisch [21.10.2020].

Die zeitliche Entwicklung des Leitzinssatzes soll mithilfe von exponentieller Regression durch die Funktion *L* modelliert werden.

$$L(t) = a \cdot b^t$$

t ... Zeit ab 1.1.2008 in Jahren

L(t) ... Leitzinssatz zur Zeit t in Prozent

- 1) Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der Funktion L auf. [0/1 P.]
- 2) Ermitteln Sie den Zeitraum, in dem sich der Leitzinssatz gemäß der Funktion L jeweils halbiert. [0/1 P.]

BundesministeriumBildung, Wissenschaft und Forschung

SRDP Standardisierte Reife- und Diplomprüfung

Möglicher Lösungsweg

a1)
$$K_6 = 78030,55 + 8371,13 = 86401,68$$
 $i = \frac{3628,87}{86401,68} = 0,0419...$

Der Zinssatz beträgt rund 4,2 % p.a.

a2)
$$K_0 \cdot 1,042^7 = 12\,000 \cdot \frac{1,042^7 - 1}{0,042} + 78\,030,55$$
 $K_0 = 130\,000,001...$

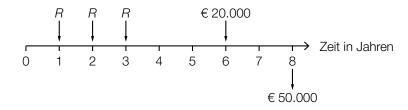
Die Höhe des Kredits betrug € 130.000.

a3)
$$Z_{\text{neu}} < Z_8$$
 $T_{\text{neu}} > T_8$ $K_{\text{neu}} < K_8$

- a1) Ein Punkt für das richtige Berechnen des Jahreszinssatzes i.
- a2) Ein Punkt für das richtige Berechnen der Höhe des Kredits.
- a3) Ein Punkt für das Eintragen der richtigen Zeichen.
- Wenn der Tilgungsanteil
 in einem bestimmten Jahr
 gleich 0 ist,

 Wenn der Tilgungsanteil
 in einem bestimmten Jahr
 negativ ist,

А	so wird die Restschuld in diesem Jahr vollständig beglichen.
В	so ist die Restschuld in diesem Jahr niedriger als im vorhergehenden Jahr.
С	so werden in diesem Jahr nur die anfallenden Zinsen beglichen.
D	so wird in diesem Jahr weniger als die anfallenden Zinsen zurückgezahlt.


b1) Ein Punkt für das richtige Zuordnen.

BundesministeriumRildung Wissenschaf

Bildung, Wissenschaft und Forschung

c1)

c2)
$$R \cdot 3 + 20000 = 50000$$

c1) Ein Punkt für das richtige Eintragen der Raten.

Ein Punkt für das richtige Eintragen des Betrags in Höhe von € 20.000.

c2) Ein Punkt für das richtige Berechnen von R.

d1) Berechnung mittels Technologieeinsatz:

$$L(t) = 4,472 \cdot 0,599^{t}$$
 (Parameter gerundet)

d2)
$$0.5 = 0.599^t$$
 $t = \frac{\ln(0.5)}{\ln(0.599)} = 1.352...$

Der Leitzinssatz halbiert sich gemäß der Funktion L jeweils in einem Zeitraum von rund 1,35 Jahren.

- d1) Ein Punkt für das richtige Aufstellen der Gleichung der Funktion L.
- d2) Ein Punkt für das richtige Ermitteln des Zeitraums.